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A simple spin-flip process is analyzed under the presence of two heat reservoirs. While one flip process is
triggered by a bath at temperature T, the inverse process is activated by a bath at a different temperature T�.
The situation can be described by using a master equation approach in a second quantized Hamiltonian
formulation. The stationary solution leads to a generalized Fermi-Dirac distribution with an effective tempera-
ture Te. Likewise the relaxation time is given in terms of Te. Introducing a spin representation we perform a
Landau expansion for the averaged spin ��� as order parameter and consequently, a free energy functional can
be derived. Owing to the two reservoirs the model is invariant with respect to a simultaneous change �↔
−� and T↔T�. This symmetry generates a third order term in the free energy which gives rise a dynamically
induced first order transition.
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I. INTRODUCTION

Whereas equilibrium statistical mechanics has based on a
secure theoretical foundation, this is far from being the case
in nonequilibrium. The feature of equilibrium phenomena is
the existence of a probability distribution describing the sta-
tistical properties of these systems. In general this distribu-
tion depends on the interaction among the particles and the
temperature of a single external source called a heat bath. In
nonequilibrium the situation is different and consequently
also the methods, attacking the problems are different. A
variety of processes are described by Markovian models,
where the dynamical process depends only on the present
configuration of the system. The master equation is one im-
portant tool for describing different stochastic processes on a
complex energy landscape �1�. The inputs, required for the
master equation �2�, are a set of states and a set of transition
rates between those states, for a very recent approach see �3�.
Often the transition rates are determined according to the
principle of detailed balance, in particular in case the system
is coupled to a single heat bath with a certain but fixed tem-
perature. Thus for stochastic jump processes the rates are
assumed to follow an Arrhenius ansatz with an activation
energy in terms of the temperature of the underlying heat
bath. Otherwise, there is no necessity for having only one
bath. Therefore we consider here a simple model with two
separate heat baths at different temperatures. To be specific
let us study an annihilation and creation process of particles
or an equivalent spin-flip process, however, both processes
should be activated by different heat reservoirs. While the
spin-flip up-down is triggered by a bath at the temperature T,
the reversed down-up-flip is activated by the heat bath at the
different temperature T�. Apparently both flip rates are like-
wise determined by different temperatures. One could specu-
late about a generalization by introducing as many heat baths
as energy levels exit, i.e., each state is related to its own bath
and maybe there is a flow between the baths which
established a typical nonequilibrium situation.

In the present paper we are interested in a two-level
model which can be visualized in terms of a spin variable or
alternatively by lattice gas variables. The flip process will be
organized by a coupling to two local reservoirs. An appro-
priate method to study such a situation is given by the master
equation approach formulated in terms of second quantized
operators �4–10�. In that approach the flip-processes are de-
scribed by creation and annihilation operators, whereas the
temperate dependence of the rates are incorporated in the
approach by using a Heisenberg-like picture �11–13�. The
approach is generalized in such a manner which enables us to
consider two different heat baths.

The analysis can be grouped into the current interest in
studying systems with different heat reservoirs �14–33�. The
analysis is motivated by searching for some generic features
of nonequilibrium steady states. In particular, the question
arises for a universal behavior under nonequilibrium condi-
tions. In one of the first papers on this topic �14� the station-
ary nonequilibrium states in the Ising model with locally
competing temperatures had been studied. The system re-
veals a variety of stationary states and phase transitions. A
two-temperature, kinetic Ising model is investigated in �16�
and extended to a diffusive kinetic system in �18�. The au-
thors found a bicritical point, where two nonequilibrium
critical lines meet. The analysis is strongly supported by
Monte Carlo simulations in two dimensions. A similar simu-
lation has been performed studying a two-temperature lattice
gas model with repulsive interactions �20�. The two-
dimensional nonequilibrium Ising model with competing dy-
namics induced by two heat baths had been studied in
�15,17,21�. Despite the two reservoirs the critical exponents
belong to the same universality class as the corresponding
equilibrium model. In �15� the authors found a change of the
phase transition from second to first order. Alternatively a
two temperature lattice gas model with repulsive interactions
is studied �20,27�. Hereby, the nonequilibrium transition re-
mains continuous unlike in our approach. Another field of
interest is the Carnot engine, Carnot refrigerator �22,30� in-
cluding a thermally driven ratchet under periodic dichoto-
mous temperature change �16�, which can be likewise char-
acterized by two reservoirs. General aspects of a
thermodynamic cycle with open flow had been considered in*Electronic address: steffen.trimper@physik.uni-halle.de
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�25� and a rectification of the Clausius inequality is recently
discussed in �33�. Totally different physical situations occur,
when the flow of complex fluids had been analyzed under
different heat sources �19�, or in case of a nonlinear oscilla-
tor coupled to various heat baths �24�. As pointed out in �26�
magnetic systems with annealed degrees of freedom are pre-
destined to offer some features of two-temperature systems.
An interesting physical explanation for a two reservoir sys-
tem is discussed recently �29�, where the fast and the slow
variables of a Hamiltonian system are related to different
heat baths. In �29� it is demonstrated that the Onsager rela-
tions do not apply if the two baths are not too close. Appar-
ently transport properties are determined by the heat sources.
In �31� the occurrence of anomalous heat conductivity in a
one-dimensional non-Markov process is studied, whereas in
�32� a hidden heat transfer is observed, when the nonequilib-
rium steady states are maintained by two heat reservoirs.
Very recently in a series of papers �34� the phase space prob-
ability density for steady heat flow is discussed. In that case
the two baths are mutually connected leading to a flow.

As mentioned above we study a spin-flip process under
the influence of two heat reservoirs. Because this process is
on a mesoscopic description related to model A in the clas-
sification of Hohenberg and Halperin �35� we also analyze
the critical dynamics under a two-temperature reservoir.

II. QUANTUM APPROACH TO NONEQUILIBRIUM

The further analysis is based on a master equation which
is written in the form

�tP�n� ,t� = LP�n� ,t� . �1�

Here P�n� , t� is the joint probability density that a
certain configuration, characterized by a state vector
n� = �n1 ,n2 . . .nN�, is realized at time t. In a lattice gas descrip-
tion each point is either empty or single occupied leading to
ni=0,1. Since these numbers can be considered as the eigen-
values of the particle number operator and because of the
similarity of the evolution equation �1� to the Schrödinger
equation one can introduce a quantum formulation of the
master equation. This is firstly done by Doi �4� for a Bose-
like system and later by other authors for spin operators
�5–7�, for reviews compare �8–10�. The dynamics of the sys-
tem is determined completely by the the evolution operator
L and the commutation relations of the underlying operators.
In case of using Pauli-operators the restrictions for the occu-
pation numbers to empty and single occupied states is guar-
anteed, see Eq. �7�. To transform the basic equation �1� in a
second quantized form one has to relate the probability dis-
tribution P�n� , t� to a state vector �F�t�� in a Fock-space ac-
cording to P�n� , t�= �n� �F�t��. If the state vectors �n�� are a
complete set then the last relation implies the expansion

�F�t�� = �
ni

P�n� ,t��n�� . �2�

Under this transformation Eq. �1� can be rewritten as an
equivalent equation in a Fock-space

�t�F�t�� = L�F�t�� , �3�

where the operator L is determined in such a manner that its
matrix elements correspond to L. It should be emphasized
that the procedure is up to now independent on the realiza-
tion of the basic vectors. As shown by Doi �4� the average of
an arbitrary physical quantity B�n�� can be calculated by the
average of the corresponding operator B�t�

�B�t�� = �
ni

P�n� ,t�B�n�� = �s�B�F�t�� �4�

with the state function �s�=��n��. Defining the density
operator

� = �F�t���s� , �5�

the mean value can be even expressed in the conventional
manner as follows:

�B�t�� = Tr„�B�t�… .

The evolution equation for an operator B�t� reads now

�t�B� = �s��B�t�,L�−�F�t�� . �6�

As the result of the procedure, all the dynamical equations
governing the classical problem are determined by the struc-
ture of the evolution operator L and the commutation rules of
the operators. In our case the dynamics will be realized by
spin-flip processes.

III. COUPLING TO HEAT BATHS

Introducing Pauli-operators satisfying the commutation
relation

�di,dj
†� = �ij�1 − 2didi

†� , �7�

the evolution operator of a flip-process at lattice site i reads
�11�, compare also �10�,

Li = ��di
† − didi

†� + ��di − di
†di� . �8�

Here the flip-rates � and � are parameters which are tem-
perature dependent in case the system is coupled to a heat
bath. As demonstrated in �11–13� such a coupling can be
directly incorporated into the quantum formulation by
replacing the operator in Eq. �8� through

L = ��
i

��1 − di
†�exp�− �H/2�di exp��H/2�

+ �1 − di�exp�− �H/2�di
† exp��H/2�� . �9�

The remaining parameter � is determined by the microscopic
time scale given by the duration of a single spin flip. The
quantity �=T−1 is the inverse temperature �in units of kB� of
the heat bath and H describes the static interaction. For fur-
ther motivation of this approach and the relation to the
Glauber model see also see �13�. Now let us generalize the
model by including two heat baths with different tempera-
tures T and T�. A possible extension of Eq. �9� is given by
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L = ��
i

��1 − di
†�e−Hi/2T�die

Hi/2T + �1 − di�e−Hi/2T�di
†eHi/2T� .

�10�

The two reservoirs are coupled directly to each lattice point i,
therefore the Hamiltonian is not the global one but a local
energy functional. To illustrate the approach let us discuss
the simplest case where the Hamiltonian is given by

Hi = �	i − 
�di
†di. �11�

Here 	 is a characteristic energy and 
 is the chemical
potential. Using the algebraic properties of the Pauli-
operators we get

L = ��
i

��1 − di
†�di exp„�	i − 
�/2T…

+ �1 − di�di
† exp�− �	 − 
�/T��� . �12�

Instead of the lattice gas variable ni=di
†di with the eigenval-

ues 0, 1 we can introduce a spin variable by �i=1−2ni. Thus
the empty state �0� corresponds to the spin-up state �↑� and
the occupied state �1� is related to the spin-down state �↓�.
With regard to Eq. �11� we find the nonzero terms of the
evolution operator �10�

exp�− Hi/2T��di exp�Hi/2T��1� = exp�	i − 
�/2T�0� ,

exp�− Hi/2T��di
† exp�Hi/2T��0� = exp„− �	i − 
�/2T�…�1� .

�13�

The flip process �↓ �→ �↑ � is triggered by the heat bath at
temperature T whereas the inverse process �↑ �→ �↓ � is acti-
vated by the bath at T�. Here we have assumed that the
activation energy 	 is the same for both baths. However, a
generalization to different activation energy and bath baths
consequently different chemical potential is possible. We re-
mark that there is no further restriction for the chemical po-
tential 
. Using Eq. �6� and the algebraic properties of Pauli
operators, the evolution equation for the averaged density
reads

�−1�t�ni� = exp„− �	i − 
�/2T�…�1 − ni� − exp„�	i − 
�/2T…

��ni� . �14�

This equation can be solved exactly and exhibits a stationary
solution of the form

�ni�s =
1

exp„�	i − 
�/Te… + 1
with

1

Te
=

1

2
	 1

T
+

1

T�

 .

�15�

Obviously, the effective temperature is not the mixing tem-
perature of both baths. Instead of that it is the harmonic
average of T and T�. The result is the consequence that the
inverse temperature is the integrating factor for the heat and
thus the entropy, governing the steady states, is the sum of
both reservoirs. Let us remark that according to Eq. �5� the
nonequilibrium entropy could be defined usually by

S = − Tr � ln � .

Due to the restriction to single flips the problem is to reduce
this many particle entropy to a single particle entropy
expected to be

S = − �
i

��ni�ln�ni� + �1 − �ni��ln�1 − �ni��� .

Maximizing this expression under the constraints of a grand
canonical example with two reservoirs one gets Eq. �15�.

To illustrate the approach let us consider the spin
representation leading to

��i�s =
e�	i−
�/2T − e−�	i−
�/2T�

e�	i−
�/2T + e−�	−
�/2T�
. �16�

In the special case T=T� the stationary solution coincides
with the conventional equilibrium solution

��i�s = tanh
	i − 


2T
. �17�

If the temperature of one of the heat baths tends to infinity
�for instance T�→�� the stationary solution is

���s = tanh
	i − 


4T
.

When both temperatures T and T� are infinitesimally �14�
different from each other T�=T+T the averaged spin is

���s = tanh
	i − 


2T
	1 −

T�	i − 
�
2T2 sinh�	i − 
�/T
 . �18�

The relaxation time tr related to the Eq. �14� is simply given
by

��trel�−1 = exp�	i − 


2T
� + exp�−

	i − 


2T�
� . �19�

The relaxation time for T��T is either enhanced for T��T
or diminished in the opposite case. In particular this behavior
can be observed for small difference between both baths re-
sulting in

��trel�−1 = 2 cosh�	i − 


2T
� +

T	i

2T2 e−�	i−
�/2T.

IV. PHASE TRANSITION

Now let us study Eq. �14� for a magnetic system, where
the energy 	i at the lattice site i depends on the surrounding
spin configuration. The chemical potential in that case is zero
and the interaction is assumed to follow the Ising type. In the
simplest mean field approximation the energy is given by

	i = 2	hi + �
j

Jij�� j�
 , �20�

where hi is an external field and Jij is the interaction between
the z nearest neighbors. First the homogeneous case in zero
field is discussed. Thus, we have
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	 = 2Jz���  2T0��� , �21�

whereby T0 plays the role of the critical temperature for the
conventional case with only one heat bath. Inserting Eq. �21�
in Eq. �14� we get

�−1�t��� = exp
T0���

T
− exp�−

T0���
T�

�
− ���	exp

T0���
T

+ exp�−
T0���

T�
�
 . �22�

According to the flip rules defined in Eq. �13�, this equation
is invariant against the simultaneous symmetry transforma-
tion �↔−� and T↔T�. Thus, making an expansion with
respect to ��� we find

�−1�t��� = − r��� + b���2 − u���3,

with r = 2T0	 1

Te
−

1

T0

, b = T0

2	 1

T
−

1

T�

	 1

Te
−

1

T0

 ,

u =
T0

2

2
	 1

T2 +
1

T�2
 −
T0

3

6
	 1

T3 −
1

T�3
 . �23�

One can easily check that for T=T� the conventional Landau
expansion results. Otherwise for two different heat baths
with b�0 the extended symmetry allows a quadratic term in
���. Thus one concludes that a first order transition is dy-
namically induced. Such a situation had been discussed al-
ready in �14,15,21� applying a different approach. To illus-
trate the situation in more detail let us derive directly from
Eq. �23� an analog of the free energy for a two bath system:

�−1����
�t

= −
�F

����
with

F = F0 +
r

2
���2 −

b

3
���3 +

u

4
���4. �24�

From here we find another peculiarity of the two bath sys-
tem, namely the stationary solution is different from the
minimum of the free energy. The stationary solution follows
from Eq. �16� with Eq. �21� to be

���s = tanh
T0���s

Te
. �25�

Apparently this solution is totally different from the mini-
mum of the free energy, which follows from Eq. �23� by
setting �t���=0.

Now let us consider the case that T�=T+T. The coeffi-
cient, defined in Eq. �23�, are for temperatures in the vicinity
of T0,

r = 2	� +
T

2T0

, b = − �

T

T0
, u =

2

3
	1 −

3T

4T0



with � =
T − T0

T0
. �26�

When T�T�T0 the coefficient b can be neglected leading
to a stationary solution

���s = ±� 3

T0
	�T0 −

T

2
� − T
 .

In that case a second order phase transition results where the
critical temperature is shifted to T0− T

2 .
In the case of an inhomogeneous field hi we calculate the

response function defined by

�ij = � ���i�
�hj

�
hj=0

. �27�

Inserting Eq. �20� into Eq. �14�, then the response function
fulfills after performing the Fourier transformation in the
following equation:

�t��q� ,t� = − R�q��	��q� ,t� −
� �T,T��

R�q��

 with

R�q�� =
eT0���s/T + e−T0���s/T� − J�q�� � �T,T��

� �T,T��
,

� �T,T�� =
eT0���s/T�1 − ���s�

T
+

e−T0���s/T��1 + ���s�
T�

.

�28�

Here ����t� is replaced by the stationary magnetization ���s,
which satisfies Eq. �25�. In case of long wave excitations it is
convenient to expand the interaction as follows:

J�q�� = J�0��1 − cq�2� with J�0� = Jz = T0.

Inserting this expression into the solution of Eq. �28� we get
in the limit t→� the stationary susceptibility of the form

�s
−1�q�� = cT0q�2 + r

with r =
Te − T0�1 − �s

2�
1 − �s

2 . �29�

In the special case T=T� it results r= �T−T0�1−�s
2�� / �1

−�s
2��T−T0 as expected.

V. CONCLUSIONS

We have considered spin-flip processes where the rates
are conditioned by two different heat baths. The situation in
mind can be analyzed in a seemingly compact form using the
master equation in a quantum Hamilton formalism. Using
this formalism we find an evolution equation for the aver-
aged occupation number, where the stationary solution gives
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rise to a generalized Fermi-Dirac distribution with an effec-
tive temperature. This temperature is not the mean value of
both baths. In terms of equilibrium statistics such a distribu-
tion is obtained by coupling separate baths to each energy
level. Instead of using a lattice gas variable we rewrite the
evolution equation in terms of spin variables and end up with
a Landau-like expansion for the order parameter. From here
we conclude the existence of a free energy functional, where
the coefficients depend on both temperatures. Owing to the
two reservoirs the system allows a novel symmetry consist-
ing of the invariance of the evolution equation against the

change of the spin orientation and simultaneously the inter-
change of the baths. Consequently, a first order phase transi-
tion is dynamically induced. In a further step both baths
should be coupled leading to a temperature flow.
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